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1 The present work was developed during a resear
The problem of two-phase, free-surface flows over a mobile bed is characterized by a
hyperbolic partial differential equations system that shows nonconservative terms and
highly nonlinear relations between primitive and conserved variables. Weak solutions of
the present problem were obtained resorting both to the distribution theory and to the
integral formulation of momentum conservation: the comparison of these two approaches
allowed us to give a physical insight into the meaning of the nonconservative term across a
discontinuity. Starting from this result, we derived the conditions necessary to obtain gen-
eralized, well-balanced Roe solvers without using the concept of a family of paths. Two
numerical schemes based on the same set of matrices have been developed, one in terms
of conserved variables and one in terms of primitive variables. The friction-source term has
also been included by using an upwind approach. The capabilities and limits of the pro-
posed schemes have been analyzed by comparison with exact solutions of Riemann prob-
lems and with numerical solutions obtained with the AWB-3SRS scheme.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Water flows in mountain regions are frequently connected with heavy sediment movements that generate significant ero-
sional and depositional processes. Debris flows and dam-breaks over mobile beds are the most widely studied phenomena of
this type. The quantity of sediment that can be transported in these flows is such that it is more appropriate to describe these
phenomena as flows of a mixture of water and sediments instead of considering water flows with a negligible contribution of
the transported sediments in terms of mass and momentum. Moreover, the exchange of sediments from the bed to the flow
and vice-versa is such that the bed variations have the same time-scale as the free-surface variations. The mathematical
description of flows with high sediment transport is therefore rather different from the equation system used in the case
of sediment transport in rivers and shows peculiarities which are rather challenging from a numerical point of view. Despite
a significant increase in both interest and research in recent years, knowledge of the phenomenon is not complete and there-
fore several different mathematical models can be found in existing literature, each with its own features [14,15,3,5]. In this
paper we focus our attention only on a specific model already used by some of the authors [22,2], leaving the problem of
development, validation and discussion of mathematical models for these types of flows to other scientific communities.

The aim of this paper is exclusively numeric: it consists in the development of generalized Roe approaches for the
assumed mathematical model and in the analysis of the performances of these new numerical schemes. Roe schemes have
. All rights reserved.
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already been employed in some works regarding debris flows and ordinary mobile-bed flows. Specifically, [3] applied this
approach to a model that can be considered a rather simplified version of that assumed in this paper; [13] used Roe schemes
for solving one-dimensional shallow-water equations with sediment transport and bed evolution; [9] extended the approach
of [13] by using ENO-WENO methodology and linearizing the nonconservative term present in the system of equations. Nev-
ertheless the numerical problems examined in this paper are rather different from those present in the above-mentioned
papers: the hyperbolic PDEs system is much more complex, it presents a nonconservative term that cannot be simply line-
arized or treated as a source term, and furthermore the relation between primitive and conserved variables is highly
nonlinear.

As we will show in the following section, the development of generalized Roe approaches for the present problem cannot
follow the results available in the literature based on the distribution theory approach [27,19,20,7]. Instead, generalized Ran-
kine–Hugoniot relations have been obtained in [22] writing the integral formulation of the momentum conservation prin-
ciple for a moving frame with velocity equal to the shock speed Ss (physical approach). This result has been used in order to
develop generalized Roe solvers. The basic path we have taken is as follows: we went back to the original ideas of Roe, re-
wrote the original conditions in terms of generalized expressions and finally found a suitable matrix (or matrices) fulfilling
the constraints. Unfortunately, the approaches we obtained, one in terms of primitive variables and one in terms of con-
served variables, are not completely general and cannot be applied straightforwardly to all nonconservative hyperbolic sys-
tems. Nevertheless, they may become useful frameworks for developing generalized Roe solvers in cases in which
generalized Rankine–Hugoniot relations are available from integral conservation principles. Finally, the numerical schemes
we present are only first-order accurate because in this way the peculiarities of the methods are made clear. Extension to
higher orders will be a goal of our future work.

The outline of the paper is as follows: in Section 2, we present the integral and differential formulations of the mathemat-
ical model, the features of the relevant weak solutions and of the relevant Riemann Problems (hereafter RPs). In Section 3, the
conditions necessary for obtaining well-balanced, generalized Roe solvers as well as the relevant matrices are developed first
for a conserved-variable approach, then for a primitive-variable approach. The section ends with the treatment of the source
friction term and the stability condition for the methods. In Section 4, the capabilities and limits of the proposed schemes are
analyzed by comparison of the numerical results with exact solutions of RPs and with the numerical results of the AWB-3SRS
scheme [22]. The paper closes with some conclusions.

2. The mathematical model and its features

In this section, we briefly present the mathematical model adopted in this work with its peculiarities. The phenomena we
are interested in regard highly erosive free-surface flows propagating over loose beds of coarse, cohesionless sediments. They
can be encountered in various conditions of geomorphological and engineering interest ranging from valley-forming floods,
to debris flows in mountainous terrain. Other remarkable cases regard laboratory studies of dam-break flows over a mobile
bed.

The model involves the following assumptions: (i) shallow-water approach: the flow is oriented in a predominantly hor-
izontal direction and is confined to a layer which is thin compared to the horizontal scale of interest; (ii) two-phase flow: the
mixture of water and sediments is described by using the continuum approach and assuming the same velocity for the liquid
and for the solid phase; (iii) morphodynamic interface: the bed boundary Cb is viewed as a phase interface across which the
liquid-granular mixture undergoes a transition from fluid- to solid-like behaviour; above Cb the mixture is assumed to flow
as a fluid, while a solid-like behaviour is considered below this level (i.e. a rigid granular skeleton through which ground-
water seepage is neglected). Erosion occurs as the bed boundary progresses downwards while deposition results when
the boundary moves up. For more details on the physical and theoretical framework used to work out the model we refer
to [11] and to [22] for the demonstration of the mathematical properties of the model.
Fig. 1. Control volume for the determination of the integral equations of flow over mobile-bed with high sediment transport.
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Considering a generic control volume C (Fig. 1), the relevant integral formulation of the model derives, respectively, from
the depth-averaged equation of bulk mass conservation, conservation of the solid phase mass and conservation of the mix-
ture momentum. In a Cartesian coordinate system (x,z) with a horizontal x-axis and a vertical z-axis, this becomes:
o

ot

Z x2

x1

Udxþ Fjx2
� Fjx1 �

Z x2

x1

PdCb ¼
Z x2

x1

R dCb ð1Þ
where x1; x2 are the limits of the control volume C, Cb is the line defining the bed, and the vectors are, respectively
U ¼
hþ z

chþ cbz

ðcDq þ 1Þuh

0B@
1CA; F ¼

hu
chu

ðcDq þ 1Þðu2hþ 1
2 gh2Þ

0B@
1CA; ð2Þ

P ¼
0
0

pbx
qw

0B@
1CA; R ¼

0
0
� sx

qw

0B@
1CA; ð3Þ
where h is the mixture depth, u is the depth averaged velocity, c is the volume concentration of sediments, cb is the concen-
tration of sediments in the bed (c < cb), z is the bed elevation, g is gravity, Dq ¼ ðqs � qwÞ=qw is the relative buoyant density
of the sediments, qs is the density of the solid phase and qw is the density of the water. Finally, pbx; sx are, respectively, the x-
component of the pressure and of the shear stress exerted on the bed.

As far as the closure relation is concerned, we assumed the immediate adaptation hypothesis which considers an alge-
braic relation between the local and instantaneous values of the physical variables and the concentration. The expression
used in this work is:
c ¼ cbc
u2

h
; ð4Þ
where c is an empirical parameter [25]. As for the bed shear stress s, it can be replaced by using any expression for open-
channel hydraulics or for debris-flow rheology [26,3,2].

From a physical point of view, the peculiarity of this model, as compared to sediment-transport models, lies in the
momentum equation: when the sediment concentration is low (as commonly happens in standard sediment transport con-
ditions) concentration is negligible and the equation degenerates to the standard shallow-water momentum equation. More-
over, since in this case the bed variations are small and rather smooth, decoupling of the hydrodynamic system from the bed
elevation equation is commonly assumed and the pressure on the bed is expressed by a smooth function. When on the other
hand concentration is high (as in debris-flow situations), there is a strong interaction between the two phases and between
the mixture and the bed, and so no decoupling can be considered. Moreover, since the bed variations may be large, appro-
priate treatment of the pressure term over discontinuities is mandatory.

The differential formulation of the mathematical model can be obtained assuming smooth variation of the variables and
an infinitesimal width of the control volume. In these conditions, the pressure term becomes:
pbx

qw
¼ �ghðcDq þ 1Þ oz

ox
; ð5Þ
while the PDEs system is reduced to:
oU
ot
þ o

ox
FðUÞ þH

oz
ox
¼ R; ð6Þ
where
H ¼ 0 0 ghðcDq þ 1Þ
� �T ð7Þ
It can be demonstrated [26] that the system (6) is strictly hyperbolic: two eigenvalues have the same sign as the particle veloc-
ity u while one is opposite. We name them in ascending order: with u > 0, k1 < 0, k2 P 0, k3 > 0 and k3 > k2, while k2 ¼ 0 only
if u ¼ 0, i.e. the condition of fluid at rest. k1 and k3-characteristic fields are genuinely nonlinear while the k2-characteristic field
is linearly degenerate only for the condition of water at rest, while it remains nonlinear for any other value of the variables.

2.1. Weak solutions

Because of the presence of a nonconservative term, the definition of a weak solution for the hyperbolic system (6) is not
straightforward.

2.1.1. The theoretical–mathematical approach
The first way to obtain a definition of a weak solution for a general nonconservative hyperbolic system is by resorting to

the distribution theory. For a detailed treatment of the topic we refer to [8,16,10]. Here we will give only a brief overview of
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this approach yielding a generalized expression of the Rankine–Hugoniot relation. We will then apply this approach to our
specific problem.

Following [10], given a generic nonconservative product fðUÞðoU=oxÞ, where f : Rm ! Rm is a smooth function and U is a
function of bounded variation, its value across a discontinuity, with left and right values UL;UR, respectively, can be defined
by means of a Borel measure:
l ¼
Z 1

0
fðUðs; UL;URÞÞ

oU
os
ðs; UL;URÞds ¼ fðUÞ oU

ox
; ð8Þ
where Uðs; UL;URÞ, called a family of paths, is a Lipschitz map U : ½0;1� � Rm � Rm ! Rm satisfying certain properties of con-
sistency and regularity. In particular:
Uð0; UL;URÞ ¼ UL; Uð1; UL;URÞ ¼ UR: ð9Þ
The value of the measure (8) depends on the particular choice of the family of paths. Given a generic nonconservative hyper-
bolic problem
oU
ot
þ fðUÞ oU

ox
¼ 0; ð10Þ
a discontinuous solution Uðx; tÞ is a weak solution of (10) if and only if, across the discontinuity moving at a speed Ss, it sat-
isfies the following generalized Rankine–Hugoniot condition:
Z 1

0
ðSsI� fðUðs; UL;URÞÞÞ

oU
os
ðs; UL;URÞds ¼ 0; ð11Þ
where I is the identity matrix. It must be noticed that given UL;UR, the speed of the shock depends, in general, on the par-
ticular choice of the family of paths. If on the other hand fðUÞ is the Jacobian matrix of a flux function FðUÞ, the previous
relation reduces to the standard Rankine–Hugoniot relation regardless of the choice of the family of paths.

Now, turning to our problem, it is not easy to rewrite the homogeneous part of the system (6) in a nonconservative form
as (10) because the pressure term depends on the spatial derivative of a primitive variable and not on the spatial derivatives
of the conserved variables. Nevertheless, formally, the following expression can be written:
oU
ot
þ ðJðUÞ þH0ðUÞÞ oU

ox
¼ 0; ð12Þ
where JðUÞ ¼ oF=oU and H0ðUÞ is a suitable matrix. The generalized Rankine–Hugoniot relation becomes:
Z 1

0
ðSsI� JðUðs; UL;URÞÞ �H0ðUðs; UL;URÞÞÞ

oU
os
ðs; UL;URÞds ¼ 0:
Using the property (9) and considering that JðUÞ is a Jacobian matrix, the previous relation reduces to:
FR � FL � D ¼ SsðUR � ULÞ; ð13Þ
where
D ¼
Z 1

0
H0ðUðs; UL;URÞÞ

oU
os
ðs; UL;URÞds: ð14Þ
This last expression can also be written in terms of the following vector of primitive variables:
W ¼ ðh; q; zÞT; ð15Þ
where q ¼ uh. Relation (14) becomes:
D ¼
Z 1

0
Hðwðs; WL;WRÞÞ

ow

os
ðs; WL;WRÞds; ð16Þ
where wðs; WL;WRÞ is another family of paths from Uðs; UL;URÞ. Unfortunately, the physical meaning of this quantity is not
given by the theoretical mathematical approach.

2.1.2. The physical approach
There is another way in this problem to obtain the shock relation that the weak solution must satisfy. It can be obtained

by writing the integral formulation of the problem (1) for a moving frame with velocity equal to the shock speed Ss (see
Fig. 2). What can be obtained (see [22] for the demonstration) is a relation formally equal to (13), where
D ¼ 0; 0;
Z zR

zL

pbx

qw
dz

� �T

: ð17Þ



Fig. 2. Mobile control volume for the determination of the shock relations in flows over mobile-bed with high sediment transport. The velocity of the the
control volume is equal to the shock speed Ss:.
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The physical meaning of D is now completely clarified: the only nonnull term represents the integral of the mixture pressure
on the bottom step divided by the water density, i.e. it is a thrust term. Its evaluation would actually require knowledge of
the two-dimensional flow around the bottom step. Reasonable assumptions may nonetheless be made in a one-dimensional
framework. In the following, we assume, as in [22], that the pressure distribution in the mixture is hydrostatic over the step
and that the pressure head depends only on the free-surface level on either side of the discontinuity where the bottom ele-
vation is lower. Then, the expression of the thrust becomes:
D3 ¼ �gðckDq þ 1Þ hk �
jzR � zLj

2

� �
ðzR � zLÞ with k ¼

L if zL 6 zR

R otherwise

�
: ð18Þ
The soundness of this assumption should be validated against laboratory experiments, although this is a matter which lies
beyond the scope of this paper.

Comparing (14) and (16) with (17) and (18) it becomes clear that we know now the value of the integral but we don’t
know the expression of the specific paths Uðs; UL;URÞ or wðs; WL;WRÞ. It would be desirable to work out their analytical
expression but unfortunately, this result is still not available. Consequently, all the theory available from the literature for
developing generalized, well-balanced Roe approaches (see e.g. [27,19,20,7]) cannot be applied to the present case in a
straightforward manner.

2.2. Integral property of the RP solution

In the following, we derive an integral property of the RP solution that will be used further on to obtain approximate Rie-
mann solvers for the homogeneous part of (6). Given a Riemann problem with initial values UL;UR, a time interval [0,1] and a
space interval ½�X;X�, where
�X 6 SL; X P SR ð19Þ
and SL; SR are the positions of the slowest and the fastest wave at t ¼ 1, the solution U at time t ¼ 1 satisfies the following
property:
Z þX

�X
Uðx;1Þdx ¼ XðUR þ ULÞ � ðFðURÞ � FðULÞÞ þ

Z 1

0

Z þX

�X
PdCb dt: ð20Þ
This can easily be obtained integrating in time Eq. (1) and using a control volume ½�X;X� � ½0;1�. The spatial integral of P can
formally be evaluated using Eq. (5) where the solution is smooth, and Eq. (17) where the solution is discontinuous. It must be
noticed that the last integral in the previous equation is not time-independent because of the specific assumption (18).

It is worth comparing the previous expression with that which can be obtained using the distribution theory. Integration
over ½�X;X� � ½0;1� Eq. (6) in the sense of distributions gives:
Z þX

�X
Uðx;1Þdx ¼ XðUR þ ULÞ � ðFðURÞ � FðULÞÞ þ

Z 1

0

X3

j¼0

Z 1

0
H0ðUðs; Uj;Ujþ1ÞÞ

oU
os
ðs; Uj;Ujþ1Þds

 !
dt; ð21Þ
where Uj represents the value of the conserved variables in the jth field of the RP solution, U0 ¼ UL;U3 ¼ UR and Uðs; Uj;Ujþ1Þ
represents a family of paths connecting two subsequent intermediate states. If we assume that the union of
Uðs; Uj;Ujþ1Þ; j ¼ 0;3 gives the path Uðs; UL;URÞ, the equation becomes:
Z þX

�X
Uðx;1Þdx ¼ XðUR þ ULÞ � ðFðURÞ � FðULÞÞ þ

Z 1

0
H0ðUðs; UL;URÞÞ

oU
os
ðs; UL;URÞds; ð22Þ
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where the last integral in (21) is time-independent. This expression is commonly assumed in many papers (see e.g.
[27,19,20,7]) however, comparing this equation with Eq. (20) we can conclude that in our specific problem, the approaches
available in the literature do not apply in a straightforward manner.
3. Generalized Roe approaches

We recall here the basic steps we used to develop generalized Roe solvers for the present problem: we went back to the
original ideas of Roe, rewrote the original conditions in terms of generalized expressions and finally found a suitable matrix
(or matrices) fulfilling the constraints. In the present section, we will apply this methodology starting from the formulation
of the problem both in terms of conserved variables and in terms of primitive variables.

3.1. The consistency condition

In order to obtain a numerical solution of system (6) we divide the domain in computational cells of a constant size Dx:
the interval of the ith cell is defined by ½xi�1=2; xiþ1=2� where xiþ1=2 ¼ iDx and the position of the center of the cell xi is defined
by ði� 1=2ÞDx. Let Dt be the time step and tn ¼ nDt a generic time; assuming the usual notation we indicate with Un

i the cell-
average value of the solution Uðx; tÞ for the ith cell at time tn:
Un
i ¼

1
Dx

Z xiþ1=2

xi�1=2

Uðx; tnÞdx: ð23Þ
Un
i is therefore a piecewise approximation of the solution at time tn. We first consider the update algorithm for the homo-

geneous part of the system (6) delaying the treatment of the source term up to Section 3.4.
The Godunov method, in its first-order formulation, provides a way to update the averaged quantities at a new time step

in the following way: the variable steps that are obtained at the side of the cells with the piecewise approximation (23), are
considered as initial values of local RPs:
oU
ot þ oF

ox ðU
n
i ;U

n
iþ1Þ ¼ 0

Uðx;0Þ ¼
Un

i if x < 0
Un

iþ1 if x > 0

( 9>=>;: ð24Þ
These RPs are then evolved for a time equal to the time step; the resulting solution is cell-averaged again obtaining the piece-
wise solution at the new time level tnþ1.

In the Roe approach, the solution of each RP is obtained from the exact solution of a locally linearized problem. This solu-
tion must fulfill the so-called consistency condition, i.e. that the integral of the solution bUðx; tÞ of the linearized RP over a
suitable control volume must be equal to the integral of the exact solution of (24) over the same control volume. Using
(20) this condition becomes:
Z þX

�X

bUðx;1Þdx ¼ XðUR þ ULÞ � ðFðURÞ � FðULÞÞ þ
Z 1

0

Z þX

�X
PdCb dt: ð25Þ
Since the pressure is not constant in time, we assume the following time linearization of the consistency condition:
Z þX

�X

bUðx;1Þdx ¼ XðUiþ1 þ UiÞ � ðFðUiþ1Þ � FðUiÞ � Diþ1=2Þ; ð26Þ
where
Diþ1=2 ¼
Z þX

�X
Pðx;0ÞdCb
is the thrust term associated with the initial condition Uðx;0Þ of the side RP. It must be noticed that this assumption is exact
in case of fluid at rest but the impact of this approximation will be evident in the section concerning the numerical tests.

3.2. The generalized Roe scheme in terms of conserved variables

In this formulation, RP (24) is approximated by using the following linear RP:
obU
ot þeJðUi;Uiþ1Þ obU

ox ¼ 0

bUðx; 0Þ ¼ Un
i if x < 0

Un
iþ1 if x > 0

(
9>>>=>>>;; ð27Þ
where eJðUi;Uiþ1Þ is a constant matrix to be determined by imposing suitable conditions.
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The first derives from imposing the fulfillment of the linearized consistency condition: integrating the previous PDE sys-
tem over the control volume ½�X;X� � ½0;1�, where X satisfies (19), one gets:
Z þX

�X

bUðx;1Þdx ¼ XðUiþ1 þ UiÞ � eJðUi;Uiþ1ÞðUiþ1 � UiÞ:
Since we want to satisfy (26), the resulting constraint is
ðiÞ FðUiþ1Þ � FðUiÞ � Diþ1=2 ¼ eJðUi;Uiþ1ÞðUiþ1 � UiÞ: ð28Þ
Moreover, the following two standard requirements for the Roe method must also be fulfilled:
ðiiÞ eJðUi;Uiþ1Þ has real eigenvalues and complete set of eigenvectors;

ðiiiÞ eJðUi;Uiþ1Þ ! JðUiÞ smoothly as Uiþ1 ! Ui

ðconsistency with the exact JacobianÞ:
ð29Þ
It should be noticed that this formulation can be viewed as a particular specification of the general approach proposed orig-
inally by [27] for nonconservative systems. Nevertheless, since the exact Jacobian JðUÞ ¼ oF=oU of the original problem is not
available, his indications for constructing the matrix eJðUi;Uiþ1Þ are unfortunately useless.

We must therefore go back to the original concept of the parameter vector introduced by [21] and extend his approach to
the case with nonconservative terms. The problem can be formulated as follows: given a parameter vector V such that both
the fluxes FðUÞ and the conserved variables U can be expressed as function of V, then we look for two matrices A;B such that
eJðUi;Uiþ1Þ ¼ Aiþ1=2B�1

iþ1=2; ð30Þ
where
Aiþ1=2 ¼ A0iþ1=2 þ A00iþ1=2: ð31Þ
In order to ensure condition (i), the following relations must be satisfied:
A0iþ1=2ðViþ1 � ViÞ ¼ FðUiþ1Þ � FðUiÞ; ð32aÞ
A00iþ1=2ðViþ1 � ViÞ ¼ �Diþ1=2; ð32bÞ
Biþ1=2ðViþ1 � ViÞ ¼ ðUiþ1 � UiÞ: ð32cÞ
It is a well-known fact that in conservative systems, if every component fi of FðUÞ and every component ui of U can be ex-
pressed as a quadratic in the component vi of V, then the sought matrices are simply:
A0iþ1=2 ¼
oF
oV

����eV ; Biþ1=2 ¼
oU
oW

����eV ; ð33Þ
where eV ¼ 1=2ðVi þ Viþ1Þ. Unfortunately, because of the particular structure of the fluxes and of the conserved variables and
the presence of the nonconservative term in the equations, such a vector is not available for the present problem. We there-
fore assume as parameter vector the primitive-variable vector (Eq. (15)).

This choice allows accounting for the thrust term in a straightforward way:
A00iþ1=2 ¼
0 0 0
0 0 0
0 0 a33

264
375; ð34Þ
where
a33 ¼ gðckDq þ 1Þðhk � jzR � zLj=2Þ ð35Þ
and k is defined in (18).
The determination of the other two matrices is a little more complex and must be worked out with the following ad hoc

procedure:

� considering Eq. (30), the first step in order to ensure conditions (ii) and (iii) is to require that A0 is the Jacobian matrix of F
and B the Jacobian matrix of U, written in terms of W:
A0iþ1=2 ¼
oF
oW
¼

0 1 0
�d1u d1 0

�d2u� u2 1� 1
2 Dqccbg

� 	
þ gh d2 þ 2u 0

24 35; ð36Þ

Biþ1=2 ¼
oU
oW
¼

1 0 1
�d3u d3 cb

�Dqd1u Dqd1 þ 1 0

24 35; ð37Þ
where d1 ¼ 3cbcu2=h; d2 ¼ Dqccbðguþ 4 u3

h Þ; d3 ¼ 2cbcu=h.
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� one way to ensure additionally conditions (32a) and (32c) is to find a suitable expression of the averaged state parameter
vector fWiþ1=2 such that
oF
oW

����eW iþ1=2

ðWiþ1 �WiÞ ¼ FðUiþ1Þ � FðUiÞ; ð38aÞ

oU
oW

����eW iþ1=2

ðWiþ1 �WiÞ ¼ ðUiþ1 � UiÞ: ð38bÞ
Unfortunately, it is almost impossible to obtain such a vector. Therefore, we assume a given expression of fWiþ1=2 and we
consider the quantities d1; d2 and d3 in the Jacobian matrices as degrees of freedom. To avoid misunderstanding with the
previous definition of these quantities, we indicate them with d̂1; d̂2 and d̂3. As with the assumption made in [1] for the
fixed-bed case, we have assumed ~u ¼ ðuiþ1

ffiffiffiffiffiffiffiffiffi
hiþ1

p
þ ui

ffiffiffiffi
hi

p
Þ=ð

ffiffiffiffiffiffiffiffiffi
hiþ1

p
þ

ffiffiffiffi
hi

p
Þ and the following averaged vector:
fWiþ1=2 ¼
~h
~q
~z

264
375

iþ1=2

¼

1
2 ðhiþ1 þ hiÞ
~uiþ1=2

~hiþ1=2
1
2 ðziþ1 þ ziÞ

264
375: ð39Þ
Matrices A0iþ1=2 and Biþ1=2 now become:
A0iþ1=2 ¼
oF
oW

����eW iþ1=2

¼
0 1 0

�d̂1~u d̂1 0

�d̂2~u� ~u2ð1� 1
2 DqccbgÞ þ g~h d̂2 þ 2~u 0

0B@
1CA; ð40Þ

Biþ1=2 ¼
oU
oW

����eW iþ1=2

¼
1 0 1

�d̂3~u d̂3 cb

�Dqd̂1~u Dqd̂1 þ 1 0

0B@
1CA; ð41Þ
where d̂1; d̂2 and d̂3 are still unknowns. These coefficients can be determined univocally imposing (32a) and (32c); their
values become:
d̂1 ¼ cbc
ffiffiffiffiffiffiffiffiffi
hiþ1

p
þ

ffiffiffiffi
hi

pffiffiffiffiffiffiffiffiffi
hiþ1

p
hi þ

ffiffiffiffi
hi

p
hiþ1

ðu2
iþ1 þ u2

i þ uiuiþ1Þ; ð42aÞ

d̂2 ¼ Dqccb g~uþ
ðu2

iþ1 þ u2
i Þffiffiffiffiffiffiffiffiffiffiffiffi

hihiþ1

p ðui þ uiþ1Þ
 !

; ð42bÞ

d̂3 ¼ cbc
ðuiþ1 þ uiÞffiffiffiffiffiffiffiffiffiffiffiffi

hihiþ1

p : ð42cÞ
It is clear that different choices of the averaged vector fWiþ1=2 lead to different expressions of the above quantities. Nev-
ertheless, the above-described approach is the only one we found that also ensures fulfillment of conditions (ii) and (iii).

It is now possible to write the update algorithm as usual for Roe approaches. We define km
iþ1=2 the mth eigenvalue of the

matrix (30) and Gm
iþ1=2 the right eigenvector associated with km

iþ1=2 (see Appendix A for their detailed expression). The solution
of a linear RP can then be expressed (see e.g. [17], chapter 6) starting from the left or the right initial data adding or subtract-
ing the values of the wave strength multiplied by the eigenvector of each wave encountered on the way from the initial value
to the constant state we are interested in:
bUðx; tÞ ¼ Uiþ1 �
X

km
iþ1=2>x=t

ðlGÞmiþ1=2; m ¼ 1;2;3;

bUðx; tÞ ¼ Ui þ
X

km
iþ1=2<x=t

ðlGÞmiþ1=2; m ¼ 1;2;3
where lm is the wave strength associated with the mth eigenvalue km. The determination of the wave strengths can be done
by projecting the total jump of the conserved variables ðUiþ1 � UiÞ onto the right eigenvectors:
Uiþ1 � Ui ¼
X

m¼1;3

ðlGÞmiþ1=2: ð43Þ
The detailed expression for lm
iþ1=2 is reported in Appendix A. Finally, the update algorithm follows from an average of the

solution over the cell affected by the evolution of the side RPs located in xi�1=2; xiþ1=2:
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Unþ1
i ¼ Un

i �
Dt
Dx

X3

m¼1

ðkþlGÞmi�1=2 þ
X3

m¼1

ðk�lGÞmiþ1=2

 !
; ð44Þ
where
ðkþÞmi�1=2 ¼ ð1þ signðkm
i�1=2ÞÞk

m
i�1=2; ðk�Þmiþ1=2 ¼ ð1� signðkm

iþ1=2ÞÞk
m
iþ1=2: ð45Þ
It should be noticed that at each time-step, because of the fact that both the nonconservative term and the Roe matrices can
be expressed only in terms of primitive variables, a nonlinear system must be solved in order to go back to the primitive
variables from the conserved ones. We therefore look for a more efficient algorithm which directly uses primitive variables.
This approach will be presented in the following section.

3.3. The generalized Roe scheme in terms of primitive variables

Taking the primitive vector W, defined in (15), we want to obtain an approximated solution of the homogeneous part of
system (6) by solving the following locally linearized system
bB ofW
ot
þ bA ofW

ox
¼ 0 ð46Þ
in a Roe-type framework. This means that:

� we want to solve the following side-cell, locally-linear RPs:
oeW
ot þMðWi;Wiþ1Þ oeW

ox ¼ 0

fWðx;0Þ ¼ Wi if x < 0
Wiþ1 if x > 0

�
9>=>;; ð47Þ
where MðWi;Wiþ1Þ ¼ bB�1
iþ1=2

bAiþ1=2;

� the solution at the new time level can be expressed directly in primitive variables by means of a cell-average procedure
that leads to an expression similar to (44):
Wnþ1
i ¼Wn

i �
Dt
Dx

X3

m¼1

ðk̂þl̂KÞmi�1=2 þ
X3

m¼1

ðk̂�l̂KÞmiþ1=2

 !
; ð48Þ
where Km
iþ1=2 is the left eigenvector associated with the mth eigenvalue k̂m

iþ1=2 of MðWi;Wiþ1Þ.

In order to obtain a good scheme, the solution of (47) must fulfill the consistency condition (26). Starting from (46) writ-
ten in position iþ 1=2, its integration of over the usual control volume ½�X;X� � ½0;1� gives:
Z þX

�X

bBiþ1=2
fW dx ¼ XbBiþ1=2ðWiþ1 þWiÞ þ bAiþ1=2ðWi �Wiþ1Þ: ð49Þ
The following constraints then follow:
ðaÞ ðUi þ Uiþ1Þ ¼ bBiþ1=2ðWi þWiþ1Þ;

ðbÞ FðUiÞ � FðUiþ1Þ � Diþ1ð2 ¼ bAiþ1=2ðWi �Wiþ1Þ:
We can impose two more conditions, which are standard requirements for the Roe-type methods:
ðcÞ MðWi;Wiþ1Þ has real eigenvalues and complete set of eigenvectors

ðdÞ
bBðWi;Wiþ1Þ ! oU

oW ðWiÞbAðWi;Wiþ1Þ ! oF
oW ðWiÞ

9=; smoothly as Wiþ1 !Wi ðconsistency with the exact JacobiansÞ:
Finally, in analogy with (32c), and consistently with condition (d), we can require:
ðeÞ bBiþ1=2ðWi �Wiþ1Þ ¼ ðUi � Uiþ1Þ: ð50Þ
It should be noticed that the conditions imposed on bAiþ1=2 (conditions b and d) are the same as have been imposed on Aiþ1=2

(32a) and (32b): therefore bAiþ1=2 ¼ Aiþ1=2 and its expression is already available (Eq. (40)). As far as the matrix bBiþ1=2 is con-
cerned, conditions (a) and (e) are sufficient to determine its nine components univocally. Unfortunately, the resulting matrix
MðWi;Wiþ1Þ does not satisfy condition (d) and we have used practical computations to verify that neither condition (c) is
matched in several situations. The approach is therefore not usable in a straightforward manner. In order to be able to satisfy
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these two last restrictions, condition (a) must be relaxed. Now the requirements for matrix bBiþ1=2 are exactly the same as
those used to obtain matrix Biþ1=2 (32c); therefore
bBiþ1=2 ¼ Biþ1=2 ð51Þ
and its expression is already available (Eq. (41)). The consistency condition is thus no longer verified and therefore the solu-
tion is not completely conservative. We end up with the following result:
Miþ1=2 ¼ B�1
iþ1=2Aiþ1=2: ð52Þ
If we compare this matrix with (30), we can deduce that both matrices present the same set of eigenvalues. Let us consider
the following determinant:
d ¼ detðB�1AB�1 � kIB�1Þiþ1=2: ð53Þ
It can be written in the following two equivalent forms:
d ¼ detðB�1Þiþ1=2 detðAB�1 � kIÞiþ1=2; ð54Þ
d ¼ detðB�1A� kIÞiþ1=2 detðB�1

iþ1=2Þ; ð55Þ
from which follows:
detðB�1A� kIÞiþ1=2 ¼ detðAB�1 � kIÞiþ1=2 ð56Þ
and then
k̂m
iþ1=2 ¼ km

iþ1=2:
Considering the matrix Miþ1=2, the definition of its right eigenvector Km
iþ1=2 associated with km

iþ1=2, is
ðMKmÞiþ1=2 ¼ ðkKÞmiþ1=2: ð57Þ
Since the eigenvector Gm
iþ1=2 of eJðUi;Uiþ1Þ can be written as follows:
ðAB�1Þiþ1=2Gm
iþ1=2 ¼ ðkGÞmiþ1=2; ð58Þ
multiplying the equation on the left by B�1
iþ1=2 one gets:
ðB�1AÞiþ1=2ðB
�1GmÞiþ1=2 ¼ km

iþ1=2ðB
�1GmÞiþ1=2; ð59Þ
using (52), this becomes:
Miþ1=2ðB�1GmÞiþ1=2 ¼ kmðB�1GmÞiþ1=2:
Comparing the last expression with Eq. (57), the following equality can be obtained:
Gm
iþ1=2 ¼ Biþ1=2Km

iþ1=2; ð60Þ
which relates the eigenvalues of matrix eJðUi;Uiþ1Þ with those of matrix Miþ1=2. It follows that the wave strengths associated
with the approximated solution of RP (47) are the same as those associated with the solution of (27). In fact, by using (60)
and (50), equation (43) may be rewritten as
Biþ1=2ðWiþ1 �WiÞ ¼
X

m¼1;3

Biþ1=2ðlKÞmiþ1=2; ð61Þ
which reduces to
Wiþ1 �Wi ¼
X

m¼1;3

ðlKÞmiþ1=2; ð62Þ
which is exactly the equation that defines the wave strength for RP (47).
Finally, the resulting update algorithm (48) becomes:
Wnþ1
i ¼Wn

i �
Dt
Dx

X3

m¼1

ðkþlKÞmi�1=2 þ
X3

m¼1

ðk�lKÞmiþ1=2

 !
; ð63Þ
where ðkþÞmi�1=2 and ðk�Þmiþ1=2 are defined in (45). Moreover, by using the same quantities, it is also possible to rewrite the algo-
rithm in terms of conserved variables (44):
Unþ1
i ¼ Un

i �
Dt
Dx

Bi�1=2

X3

m¼1

ðkþlKÞmi�1=2 þ Biþ1=2

X3

m¼1

ðk�lKÞmiþ1=2

 !
: ð64Þ
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In other words, by using matrices Aiþ1=2 and Biþ1=2 as defined in the previous section, eigenstructure of B�1
iþ1=2Aiþ1=2 and wave

strengths lm, it is possible to obtain a Roe solver both in terms of conserved variables and in terms of primitive variables. The
latter is computationally faster than the former since it does not need a backward passage from conserved to primitive vari-
ables, but is not completely conservative, as will be shown in the test Section 4.

3.4. Treatment of the friction-source term and stability condition

To express the source term we used the approach of [4,18] consisting in projecting the source term onto the eigenvectors
of each side RP. In this way, a formulation with the same structure of Eq. (63) and (64) is obtained.

For the formulation in terms of conserved variables, we assume:
Riþ1=2Dxiþ1=2 ¼ Biþ1=2

X3

m¼1

ðxKÞmiþ1=2 ð65Þ
with
Riþ1=2 ¼ ð0;0;�~siþ1=2=qwÞ
T
; ð66Þ
where ~siþ1=2 is a suitable explicit expression of the average bottom stress and Dxiþ1=2 ¼ 0:5ðDxiþ1 þ DxiÞ. Since Bi�1=2 and Km
iþ1=2

are already defined, the only unknowns are xm
iþ1=2 which can be obtained by solving the previous linear system (65). The

detailed expression of xm
iþ1=2 is provided in Appendix A.

The complete update algorithm thus becomes:
Unþ1
i ¼ Un

i �
Dt
Dx

Bi�1=2

X3

m¼1

ððkþl�xþÞKÞmi�1=2 þ Biþ1=2

X3

m¼1

ððk�l�x�ÞKÞmiþ1=2

 !
; ð67Þ
where
ðxþÞmi�1=2 ¼ ð1þ signðkm
i�1=2ÞÞxm

i�1=2; ðx�Þmiþ1=2 ¼ ð1� signðkm
iþ1=2ÞÞxm

iþ1=2:
The CFL stability condition is
CR ¼ v
Dt
Dx
6 1; ð68Þ
where
v ¼max
i
fmax

m
fjk�jmiþ1=2gg m ¼ 1;2;3; i ¼ 1; . . . ;N � 1 ð69Þ
and N is the total number of cells of the domain.
Similarly, for the formulation in terms of primitive variables, the actual friction-source term is ðB�1RÞiþ1=2. Its projection

over the eigenvalues gives:
ðB�1RÞiþ1=2Dxiþ1=2 ¼
X3

m¼1

ðx̂KÞmiþ1=2: ð70Þ
Nevertheless, this expression is equal to (65) and therefore:
x̂m
iþ1=2 ¼ xm

iþ1=2:
The complete update algorithm then becomes:
Wnþ1
i ¼Wn

i �
Dt
Dx

X3

m¼1

ððkþl�xþÞKÞmi�1=2 þ
X3

m¼1

ððk�l�x�ÞKÞmiþ1=2

 !
; ð71Þ
whose stability condition is equal to the previous scheme.

4. Numerical tests

In this section, we present a series of test cases that allow assessment of the capabilities and limits of the numerical
schemes developed in the previous sections. Numerical results have been compared with exact solutions, when available,
and with the results of another numerical scheme called AWB-3SRS, previously developed by two of the authors.

4.1. Brief description of the AWB-3SRS numerical scheme

For sake of completeness we here give a brief description of the AWB-3SRS scheme. Details can be found in [22].
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The AWB approach provides a Godunov-type numerical scheme for the model used in this work. It belongs to the family
of well-balanced schemes since it includes the nonconservative term in the solution of the Riemann problem and in the up-
date algorithm. Two types of Riemann solvers can be used in this approach to evaluate the intercell fluxes: the Three-Shocks
Riemann Solver, which leads to the AWB-3SRS formulation, and the Three-Rarefaction Riemann Solver, which leads to the
AWB-3RRS one. Since the former is a little more accurate than the latter, in this work we have used the results obtained from
the former only.

The 3SRS solver shares the underlying philosophy of the well-known HLL type [12] and can be considered its natural
extension: the HLL method assumes that the Riemann problem, despite its actual wave-composition, is constituted by a con-
stant central state connected to the left and to the right states by shock waves. In the 3SRS it is assumed that the RP solution
is constituted by two constant inner-states and three shock-waves. The unknowns of the solution are: three shock speeds,
three conserved variables (the vector U) and three fluxes (the vector F) for each constant state for a total of fifteen unknowns.
Available relations are the generalized Rankine–Hugoniot relations (Eq. (13)) valid across each shock (for a total of nine sca-
lar relations) and six equations linking fluxes to conserved variables in the two constant states. The solution of the resulting
highly nonlinear system is overwhelmingly difficult. A way to approximate the problem is to assume an explicit estimate of
the shock speeds (as in the HLL approach) as well as of the thrust terms: the number of unknowns reduces to twelve (six
conserved variables and six fluxes) and the nine generalized Rankine–Hugoniot relations become linear. To end the problem,
three other equations must be chosen in the set F ¼ f ðUÞ in both the inner-states. For the specific problem, only two linear
relations can be obtained while the last is nonlinear. The authors provide a specific two-step algorithm to solve the resulting
mildly nonlinear system.

4.2. Riemann problems

The first two tests are Riemann problems designed to stress the capability of the methods to capture discontinuities even
when the bed-pressure term is significant. The numerical results are compared with the exact solutions and also with the
results of the AWB-3SRS scheme. In these tests the bottom shear stress has been neglected in the momentum equation.
The relevant exact solution has been worked out by a process of subsequent wave-field construction, starting from either
initial state (left or right), and concluding with the definition of the other. In so doing an inverse problem is solved in the
way outlined by [11]. The values of the initial conditions are taken from [22] and are shown in Table 1. To compete the data-
set we used c ¼ 0:01 s2=m;cb ¼ 0:65 and Dq ¼ 1:65. Simulations have been performed using Dx ¼ 0:1 m and a Courant num-
ber equal to 0.95.

The self-similar solution of Test A is composed of two external rarefaction waves and a central shock. In Fig. 3 both the
exact and the numerical solution obtained with the primitive-variable approach are plotted: the structure of the solution is
well described and the shock is well captured, both in terms of strength and position. Both the results obtained with the
conserved-variable approach and with the AWB-3SRS are very close and do not show evident differences as compared to
the results of the primitive-variable approach; these results, therefore, are not shown.

In Test B the self-similar solution is composed from left to right of two rarefactions and one shock. In this case also, the
exact solution is well described with all the three approaches. In Fig. 4 only the results of the primitive-variable method are
shown.

In order to point out the varying accuracy of the schemes, the absolute l2 errors have been considered. From Table 2 it is
clear that in both cases the AWB-3SRS scheme achieves the best results while the conserved-variable approach is better than
the primitive-variable approach. The reason for this outcome can be found in the different basic approximations of the three
schemes. The Roe-type approaches use an explicit (in time) expression of Diþ1=2 (see Eq. (26)) and an exact solution of a lin-
earized RP while the AWB-3SRS is an iterative two-step approach in which each side RP is solved twice in an approximated
manner, in any case maintaining the nonlinear character of the problem.

Another difference between the conserved-variable approach and the primitive-variable approach is that in the latter
method conservation is not fully satisfied. In order to quantify this effect, we considered the following global balance errors:
Table 1
Initial v

Test A

(m)

hL ¼ 2:0
hR ¼ 4:
Err ¼

PN
n¼1DtnðFn

in � Fn
outÞ þ Dxð

PK
i¼1U0

i �
P

k
UN

i ÞPN
n¼1DtnðFn

in � Fn
outÞ þ Dx

PK
i¼1U0

i

100;
where Fn
in; F

n
out are the flux matrices evaluated at the boundary of the computational domain at a generic step n, N is the num-

ber of time steps, K is the total number of cells in the computational domain, Dx is the cell length and Dtn is the time step. The
previous expression is meaningful only for the first two equations of (6) because the last equation of the system is intrinsi-
alues for the RP test cases

Test B

(m/s) (m) (m) (m/s) (m)

0 uL ¼ 1:00 zL ¼ 3:00 hL ¼ 6:00 uL ¼ 0:01 zL ¼ 1:00
00 uR ¼ 4:38 zR ¼ 2:15 hR ¼ 0:38 uR ¼ 5:01 zR ¼ 3:75
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Fig. 3. Test A: comparison between exact and numerical solutions obtained with the Roe-type scheme in terms of primitive variables at t ¼ 5 s.

10070 G. Rosatti et al. / Journal of Computational Physics 227 (2008) 10058–10077
cally nonconservative. We therefore indicate with Errtm the error relevant to the first equation (expressing the total mass
(tm) conservation) and with Errsm the error relevant to the second equation (expressing the solid mass (sm) conservation).
As can be noticed in Table 3 the order of magnitude of Errsm for the primitive approach is significantly larger than the other
values in both tests. Therefore, this method is not completely conservative as far as the solid mass is concerned. For short-
term simulations, this error could be acceptable but the impact on long-term simulation may not be negligible.
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Fig. 4. Test B: comparison between exact and numerical solutions obtained with the Roe-type scheme in terms of primitive variables at t ¼ 5 s.
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The last aspect that characterizes the behaviour of our schemes is the computational burden. Since the nonconservative
term can be expressed only in terms of the primitive variables, the conserved-variable approach needs, at each time step, a
backward passage from the conserved vector to the primitive vector by solving a nonlinear system. The primitive-variable
scheme is therefore much more efficient because it does not need this backward step. Furthermore, due to its double-step
structure, AWB-3SRS is much heavier than the other schemes. Summarizing, the computational cost necessary for passage to
a more accurate scheme is not negligible.



Table 2
Primitive-variable absolute errors (in l2 norm) concerning Tests A and B

Test A Test B

Errh Erru Errz Errh Erru Errz

Roe primitive 0.834 1.276 0.466 0.796 1.971 0.552
Roe conserved 0.744 1.188 0.394 0.790 1.640 0.578
AWB+3SRS 0.607 1.021 0.287 0.676 1.690 0.375

Table 3
Global balance relative errors at a generic timestep of the simulation concerning Tests A and B

Test A Test B

Errtm Errsm Errtm Errsm

Roe primitive 0:205� 10�11 0:957� 10�2 �0:474� 10�12 0:477� 10�2

Roe conserved 0:143� 10�11 0:732� 10�11 �0:571� 10�12 0:282� 10�8
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4.3. Erosional dam-break test

The dam-break flow over a mobile bed is a challenging test because of its intrinsic unsteadiness, the complexity of the
interaction among water, sediments and bed surface, its relevance in practical and engineering cases and finally the possi-
bility it offers of study in a laboratory flume [23,24]. Initial conditions for this particular Riemann problem require steady
water on either side of the flow field and no water on the other side. A vertical gate allows the imposition of this condition.
When the gate is removed suddenly, the subsequent flow is well described by one-dimensional shallow water, mobile-bed
models [11].

This phenomenon is a benchmark case both in terms of mathematical modelling and numerical schemes. In this paper we
do not aim to make a comparison between experimental and numerical results in order to stress the capability of the math-
ematical model, but we simply use this test case in order to highlight the limits of the primitive-variable approach as com-
pared to the conserved approach.
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Fig. 5. Dam-break problem. Comparison between exact and numerical solutions obtained, at t=5 s, with: (a) the Roe-type scheme in terms of conserved
variables; (b) Roe-type scheme in terms of primitive variables.



Table 4
Values of physical variables and parameters employed in the trench-evolution test

Subcritical condition Supercritical condition

Fr (Froude number) (�) 0.85 1.2
Bed slope (�) 8:83� 10�3 1:57� 10�2

Trench length (m) 2 2
Trench depth (m) 0.6 0.9
Banks slope (�) 5 5
v ðm1=2=sÞ 28.32 29.88
c (�) 1� 10�4 5� 10�4

h0 (m) 2. 2.
U0 (m/s) 3.76 5.31
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Fig. 6. Evolution of a trench in subcritical conditions: numerical solution obtained at (a) t ¼ 30 s and (b) t ¼ 60 s.
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In the previous section we saw that the differences between the two Roe-type schemes were not remarkably large. Nev-
ertheless, this is not true in all conditions. In this section, we present the solution of the laboratory dam-break case described
in [6]. Specifically this test is characterized by an initial depth h0 ¼ 0:1m, qs ¼ 1048 kg=m3, cb ¼ 0:5 and b ¼ 0:125. In Fig. 5
the resulst of the two Roe-type schemes, obtained at t=5 s with CFL=0.9, are plotted against the exact solution. It is clear that
in this realistic condition, the conserved-variable approach is much more accurate near the front respect to the primitive-
variable approach presenting a smeared profile and a wrong shock speed.
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4.4. Evolution of a trench

The tests presented in this section regard the evolution of a trench schematized as a big cavity in the bed with assigned
geometry. The goal of these tests is to evaluate the performances of the proposed schemes in realistic physical conditions
where the friction-source term plays an important role. In particular, we want to show the differences between the solutions
obtained by using centered and upwind treatments of the friction-source term. The exact solution of these tests are not avail-
able but, since they have been already dealt in [22], the AWB solutions can be used for the comparison with our generalized
Roe schemes. For sake of clarity and completeness, we herein provide a description of the tests.

The trench has an initial trapezoidal shape and a straight bed line with the same slope as the external domain. The initial
banks of the trench are very steep. Up- and downstream reaches of the trench present uniform conditions and are long en-
ough to rule out the influence of boundary conditions. The flow is strongly unsteady after the start, and then it develops to-
ward asymptotic uniform conditions. As the flow evolves, the bottom friction term plays an ever more important role. Its
local value has been computed by means of the Chézy formulation,
s
qw
¼ g

v2 u2; ð72Þ
being v½m1=2=s� the Chézy friction factor. Initial conditions consist, on either side of the trench, of the uniform flow depth h0 and
velocity U0 given in Table 4. The bed slope is consistent with Eq. (72), while the other parameters in the Table 4 allow calculation
of the sediment transport and the sediment concentration in the same uniform reaches. A volumetric discharge equal to U0h0 is
initially imposed in the trench, with a straight free-surface line tilted with slope if and aligned with the free-surface outside the
trench; the flow depth is therefore initially greater in the trench, and the velocity, as a consequence, smaller.
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Fig. 7. Evolution of a trench in supercritical conditions: numerical solution obtained, at (a) t ¼ 10 s and (b) t ¼ 20 s.
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Waves soon arise from the two banks of the trench and soon interact with each other, giving rise to compound structures:
some of them run the flow domain toward the upstream end, the remainder toward the downstream end. The shape and
speed of these compound waves evolve in a way which depends both on the trench geometry and the features of the basic
uniform flows, in particular the Froude number.

The following numerical simulations have been performed using cell width Dx ¼ 0:05 m and a CFL coefficient equal to
0.95. The methods used in the comparison are: the generalized Roe method written in terms of the conserved variables
and with the upwind expression of the friction term (GRCU, Eq. (67)); the generalized Roe method written in terms of prim-
itive variables and with the upwind expression of the friction term (GRPU, Eq. (71)); the AWB method [22]. Since in the AWB
method the friction term is considered in a centered, implicit way (see [22] for details), we have also implemented a version
of the generalized Roe method in terms of conserved variables in which the friction term is evaluated in the same implicit
way as the AWB method (GRCI).

Fig. 6 presents the numerical evolution of the bed profile at two different times, obtained with the different methods. The
behaviour of the schemes is remarkably similar and only minor differences are apparent: for instance GRCI tends to under-
estimate the solution on both sides. Differences arise in the supercritical case: at t ¼ 10 s (Fig. 7a) all the generalized Roe
schemes show a small overshoot near the steep front of the downstream compound wave (not present with the AWB
scheme) and the position is also affected by the choice of scheme. The generalized Roe schemes in the central part of the
solution as well as in the upstream compound wave underestimate the solution as compared to the AWB scheme. At
t ¼ 20 s the differences are more evident throughout the solution and, in particular, the steep front of the downstream wave
shows significant differences in both position and strength. Moreover, the GRCI gives a systematic underestimation of the
solution as compared to the other schemes.

Summarizing, in these last tests the schematization of the source friction term plays a significant role for the generalized
Roe schemes in terms of conserved variables only in certain situations, while, somewhat surprisingly, the GRPU scheme gives
solutions that are closer to the AWB-3SRS solutions than the GRCU and the GRCI schemes.

5. Conclusions

In this paper, we have dealt with the problem of constructing generalized Roe-type schemes for the problem of flows over
a mobile bed with high sediment transport. The relevant PDEs system presents a nonconservative term and a highly nonlin-
ear relation between conserved and primitive variables. From the analysis of the properties of the weak solutions of the sys-
tem, we have derived the necessary conditions for obtaining generalized Roe-type solvers. The friction-source term has been
included by using an upwind approach.

Two different schemes have been built using the same set of matrices, one in terms of conserved variables and one in
terms of primitive variables. The capabilities and the limits of the two schemes have been highlighted comparing their re-
sults with exact solutions and with the numerical result of the AWB-3SRS. The main advantages of the proposed Roe
schemes as compared to the AWB-3SRS are simplicity and efficiency. In particular, the efficiency of primitive-variable
scheme is due to the absence of the implicit nonlinear passage from conserved variables to primitive variables that affect
the other two methods, while the conserved-variable Roe version is more efficient than AWB because it is a single-step algo-
rithm and not a two-step one like AWB. On the other hand, the main drawbacks of the new methods are their lower accuracy
as compared to AWB-3SRS and in particular the lack of complete conservation in the primitive-variable version.

Since both accuracy and efficiency are important in practical applications, the main challenge of our future work is to de-
velop a solver that is able to combine the efficiency of the primitive Roe-type with the accuracy of the AWB and to extend the
method to a two-dimensional approach with high-order accuracy.
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Appendix A. Eigenstructure of Aiþ1=2B�1
iþ1=2

The eigenvalues of matrix (30) are calculated from the third-order polynomial:
PðkÞ ¼ b3k
3 þ b2k

2 þ b1kþ b0 ¼ 0; ð73Þ
where
b3 ¼ �2ðcbð1þ Dqd̂1Þ þ ~ud̂3Þ;
b2 ¼ c1d̂3 þ 2ð~ud̂1ðDqcb þ 1Þ þ d̂2cbÞ þ 4cb~u;

b1 ¼ �c1d1 þ 2ð�uðucb � d3a33 þ d2cbÞ þ ghcbÞ þ gDqbu2c2
b;

b0 ¼ �2~ud1a33
and c1 ¼ ~u2ðgDqbcb þ 2Þ þ 2g~h� 2a33 while the parameters d̂1; d̂2; d̂3 are defined in (42) and a33 in (35).
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The right eigenvector of (30) associated with each km eigenvalue, with m ¼ 1;2;3; is given by (60) where:
Km
iþ1=2 ¼

kmðd̂1 � cb � d̂3k
mÞ

kmðd̂1~u� kmðcb þ d̂3~uÞÞ
ð~u� kmÞðd̂1 � d̂3k

mÞ

0BB@
1CCA; ð74Þ
while the wave strength associated with each km is
lm ¼ PT � ðWiþ1 �WiÞ
p4

; ð75Þ
where assuming a–b–m,
P ¼

cbd̂1ððkakb � ~uðka þ kbÞÞð~ud̂3 þ cbðDqd̂1 þ 1ÞÞ
þ~u2d̂1ðDqcb þ 1ÞÞ

~ud̂1ðka þ kbÞð~ud̂3 þ cbðDqd̂1 þ 1ÞÞ � kakbðc2
bðDqd̂1 þ 1Þ

þ~ud̂3ðcb þ ~ud̂3 þ cbðDqd̂1 þ 1ÞÞÞ � ~u2d̂2
1ðDqcb þ 1Þ

cb~ud̂1ðcb � d̂1 þ ~ud̂3Þ

26666666666664

37777777777775
;

p4 ¼ �cb~ud̂1ðka � kmÞðkb � kmÞð~ud̂3 þ cbðDqd̂1 þ 1ÞÞðcb � d̂1 þ ~ud̂3Þ:
Finally, the friction strength is
xm ¼ �~sDx

qwðk
a � kmÞðkb � kmÞðd̂3~uþ cbðDqd̂1 þ 1ÞÞ

ð76Þ
In the case of wet-dry fronts, where either hiþ1 or hi are nil, no sediment transport is considered and the system of equations
(1) reduce to the classical shallow-water equations. In this case, we use the approach proposed in [18].
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